P LI »
B e 70 ¥

s PEKING UNIVERSITY

Deep Neural Network Foundation

Hao Dong

2019, Peking University

u\‘Nl,,“_ »

& % at < J’ »97

: 529y =
Tgoh

PEKING UNIVERSITY

Deep Neural Network Foundation

* Single Neuron

* Activation Functions
* Multi-layer Perceptron
* Loss Functions

* QOptimization

* Regularization

* Implementation

Goal: Understand the basic knowledge of deep neural networks 2

P »
NELFES

PEKING UNIVERSITY

Single Neuron

»
@ e 7) ¥

s PEKING UNIVERSITY

Single Neuron

* Motivation

Outputs

Myelin sheat

Myelinated axon

-

NELFE®
Sing|e NeurOn PEKING UNIVERSITY

* 3inputs and 1 output

The output is a linear combination of the inputs

, Z=X1W; + X,W, + X3w
input layer output layer 171 T a2z T 433

77777777777777777777777777777 * Alarger absolute value of the weight means the output more
sensitive to the specific input

/For example, z may be a score determining if we are to play
football. If z is large, then we play. To determinate this score,
x; represents the weather, x2 is the expense of the football
field rental, and x3 is the distance to the field. These inputs
are considered the features w.r.t the output. If the whether is
the most critical factor, then we can set w; to a large positive
value and set w, and w; to smaller positive values. If any w is
Qt to zero, then the corresponding input feature is ignored. /

A single neuron

ez ¥

PEKING UNIVERSITY

Single Neuron

* 3inputs and 1 output

The output is a linear combination of the inputs

, Z=X1W; + X,W, + X3w
input layer output layer 171 T a2z T 433

* Asingle neuron is a network that has only one (output) layer and one output

w
. * As the output connected to all inputs, this layer is called “fully connected layer”

w, a or “dense layer”

w3

Single Neuron

* 3inputs and 1 output

input layer output layer

41

= a

w3

SELE PR

PEKING UNIVERSITY

This neuron can be represented by a matrix multiplication

Z = X]Wl + X2W2 + X3W3

column format row format
X1 W1 Wq
X = [xz w= [WZI x=[x; x; x3] w= [wzl
X3 W3 W3
z=wlx Z=xw

Single Neuron

* Bias

ez ¥

PEKING UNIVERSITY

A bias value allows the output value to be shifted higher or lower to better fit the input data.

input layer output layer

N

Z =x;W; + X,W, + x;w3+ b

column format

X1 Wy
X = [xz w = [WZI

X3 W3

W1
x=[x;1 x3 x3] w= lwzl

row format

Z=XwW+Db

W1

z=[x; X3 x5] [WZI + b

W3

ez ¥

PEKING UNIVERSITY

Single Neuron

e (Classification

A bias value allows the output value to be shifted higher or lower to better fit the input data.

Z=XxW;+X;Ww,+ b
input layer output layer
0,if z<0

Binary classification: a = { 1Lif 2> 0

® o Data samples with two features (x4, x,)

a S The decision boundary is a line for z = 0

x | The decision boundary can be shifted
| left or right via the bias

ez ¥

PEKING UNIVERSITY

Single Neuron

e (Classification

A bias value allows the output value to be shifted higher or lower to better fit the input data.

Z =x;W; + X,W, + x;w3;+ b

input layer output layer
Bi lassification: @ — 0,if z<0
%, inary classification: a = Lifz>0
a wy Data samples with three features (x, x,, x3)
OO
Wa The decision boundary is a surface forz = 0
° e The decision boundary can be shifted
left or right via the bias

The decision boundary must cross the origin if no bias ! W1 10

ez ¥

PEKING UNIVERSITY

Single Neuron

e (Classification

* Two input features: Decision boundary is a line
* Three input features: Decision boundary is a surface

* Many input features: Decision boundary is a hyperplane or hypersurface

v
=
=

11

v
=
=

Single Neuron

* 3inputs and 2 outputs

input layer output layer

Multiple neurons

ez ¥

PEKING UNIVERSITY

Expanding from a single neuron, a network can have multiple outputs

(The biases are not drawn to simplify the explanation)

Z; = X1Wyq + XoWoq + X3W3q + b1
ZZ == X1W12 + X2W22 + X3W32 + bz

4 N

By using multiple neurons, we can obtain multiple outputs. For
example, the outputs can represent the scores if we should
play football or basketball.

- /

They are all linear!

12

Single Neuron

* 3inputs and 2 outputs

input layer output layer

Z; = X1Wi1 + X,Wpp + X3W3;g
Zy = X1Wip + XoWpp + X3W3p

column format
X1

=[] x-|n

X3

Wi1 Wq2
W = |Wy Woo
W31 W3y

z=WTx

[Zl]_[Wn Wa1 W31]
Z) Wiz Wpy Wy

N ez X F

PEKING UNIVERSITY

row format

z=[z1 Zz] x=[x; x3 Xx3]

Wi1 W2
W =|wy wy
W31 Wy
z=xW
Wi1 Wiz
[z, z]=1[x1 X X3]|Wa Wy
W31 W3y

13

P »
NELFES

PEKING UNIVERSITY

Activation

14

ez) ¥

PEKING UNIVERSITY

Activation

* Motivation

Activation functions provide the non-linearity on the layers outputs,

and their design remains an active researched area.

A
X2 Cell body

/
S

Dendrae
Axon terminal

.
)7
I

P
4. >§
. A

. o Outputs

Myelin sheat

Myelinated axon

-

15

ez)%

PEKING UNIVERSITY

Activation
» Sigmoid or logistic function

Continuing with our example, for a given neural network, the output can represent specific scores,

such as the probability of playing football. To represent the probability from 0% to 100%, it is of
common practice to apply a function to scale the output to a value between 0 to 1.

a = f(z) = f(x;w; + x,w, + b) 10

A
i ; Sigmoid f(z)
activation value 1
05 1+e?
a Wy 1 oo_/
f2)=0(z)=77—7 °

z
14+e72
)
a | a -0.5

16

ez ¥

PEKING UNIVERSITY

Activation

e Tanh

Similar to the sigmoid, the hyperbolic tangent (tanh) also scales the output layer to a limited range
of values. With an output range between -1 to 1, this function is often used for regression, such as
for an output image with pixel values between -1 to 1.

a = f(z) = f(x;w; + x,w, + b) " o | =
—— Tanh

2
tanh(z) =,
05 1+e

0.0 -

-0.5

17

Activation

e Sigmoid vs Tanh

ez)%

PEKING UNIVERSITY

The sigmoid and hyperbolic tangent functions are used to provide non-linearity to the network.

1.0

0.5

0.0

-0.5

A
Tanh f(z)
Sigmoid

-~

18

N ez K P

PEKING UNIVERSITY

Activation

» Rectifier, Rectified linear unit (ReLU)

A function that sets the negative values to zero for the purpose of feature selection and provide a
simple way to compute the derivative which will be used in the optimization.

a = f(Z) = f(X1W1 + X2W2 + b) " ReLU f(z)‘

R(z) = max(0, z)

° wy f(z) = max(0,2) = {0' fx<0 0s

z,if x >0

0.0

19

ez ¥

PEKING UNIVERSITY

Activation

* Leaky ReLU and Parametric Leaky RelLU

However, merely setting negative values to zero will lead to information loss. A solution was
proposed with the leaky ReLU where « is a small positive value to control the slope (e.g., 0.1 and
0.2) so that the information from the negative values can pass through to the output. In addition,
the parametric ReLU (PRelLU) was also proposed to consider a as a network parameter.

1.0 A
ReLU f(z)

R(z) = max(0, z)

a = f(z) = f(x;w; + x,w, + b)

— Leaky RelU

20

ez X%

PEKING UNIVERSITY

Activation

e Softmax

An network with three outputs and three inputs, with these multiple outputs, multi-class
classification can be performed, i.e., classify the input into one of three or more classes. The
Softmax function is designed for the output layer of a multi-class classifier to not only limit all
outputs to 0 to 1, as with the sigmoid, but also ensure the sum of each output equals 1, i.e., the
Qum of all probabilities must be 100%. /

Give a output vector z = [z4, Z,, z3] then K = 3 is the vector length,
we obtain an activation vector a = [a,, a,, as] as follow

e’

legzl ezk

a, = f(z), =

Softmax first applies an exponential function to each output
and then normalizes each by dividing it by the sum of all outputs.

21

NEE RS

PEKING UNIVERSITY

Activation

Identity RelLU

Binary Step / Leaky RelLU

Sigmoid, Logistic ~~_— Softplus /
/

TanH f ELU
ArcTan / Softmax

Reference: https://en.wikipedia.org/wiki/Activation_function)

CD » g
NEFES

PEKING UNIVERSITY

Multi-layer Perceptron

23

CD » Eg
ANEFEE,
Tgoh

PEKING UNIVERSITY

Multi-layer Perceptron

 Motivation : XOR Classification Problem

X2 X2

A A
° w1 X1 Xof @ X1| Xof @
s a olo]o 0lo]o
e 0|1]0 0|11
° 100 1{01
111 1011

Z=xXW;+Xx,w,+ b
#xl #xl

AND OR

24

CD » Eg
ANEFEE,
Tgoh

PEKING UNIVERSITY

Multi-layer Perceptron

 Motivation : XOR Classification Problem

X2 X2

A A
° w1 X1 Xof @ X1| Xof @
s a 0lo]1 0|01
e 0|1]0 0|11
° 100 1{01
1110 1110

Z=xXW;+Xx,w,+ b
#xl #xl

NOR NAND

25

>
ANELE PR

PEKING UNIVERSITY

Multi-layer Perceptron

 Motivation : XOR Classification Problem

Cannot find a line to segment the data points
X, Linear non-separable problems

A A
° Wy X1 xz a x1 xz a
s Q 0lo]1 0lo]o
® b 4

e (1,0) 0(1]0 A 011
° 1|00 1101

1011 1110

Z=xWw;+Xx,W,+ Db % %
(1,0) (0,0)
> X1 > X1

XNOR XOR

26

I >
75 e xS

PEKING UNIVERSITY

Multi-layer Perceptron

e XOR Classification Problem

Learning from the extracted features
Xy Z)

A A

input layer hidden layer 1 output layer

o
(1,0)

4 X [
(0,0) (1,1) (1,0)

v
=
=
v
N
[y

XOR

27

N | A o
g =100/ %[S| Sl e[W]
REENERNEESEN
-AANERENSSN
- 1) R R) Y S 3 2) Y
- EIANEEIN Eaka KRS ES
- 2 2)]) XY £
d X% AN N[N]S
EEENEENEES
-NENSSEEENN

s

=

A

PEKING UNIVERSITY

) X784]

e
o\
)/KsA
1
Ja

[x1, X2, X3, ...

X =

ty

1

X =

2
A

We need a network model with higher capac
X
[%1, X2, X3]

»
»

 More Complex Problems
X = [xlixZ]

Multi-layer Perceptron

IR »

TN 9t - J’ w

< 5172y =
592

PEKING UNIVERSITY

Multi-layer Perceptron

* Representation Capacity

input layer output layer

activation value

30

ez ¥

Multi-layer Perceptron PEKING UNIVERSITY
* Representation Capacity
ﬁnulti—layer perceptron (MLP) extends from a sinm
fully connected layer, and consists of at least two fully

input layer hidden layer 1 output layer connected layers.

The layers between the inputs and outputs are called
“hidden” because they cannot be directly accessed
from outside the network.

By stacking a new layer on top of an existing layer, the
new layer is considered to use the output of the
previously existing layer as its input features.
Therefore, compared with a single fully connected
layer, MLP can fit more complex input data. In other

words, MLP can have more representational capability
than a single layer.

31

The biases are not drawn to simplify the figure.

P »
NELFES

PEKING UNIVERSITY

Multi-layer Perceptron

* Representation Capacity

input layer hidden layer 1 hidden layer 2 output layer

Learn from the inputs

Learn from the feature of the inputs

Learn from the feature of the feature of the inputs
32

SIS »
NELFES

PEKING UNIVERSITY

Multi-layer Perceptron

* Representation Capacity: Hierarchical Representation

input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

Layer index [= 1 ... L from the first hidden layer to the output layer.
[The input layer can be written as x = a®.
Ak

Outputindex k = 1 ... K where K is the number of units of this layer.

Activation output a’ = f(z%) 33

N ez K P

PEKING UNIVERSITY

Multi-layer Perceptron

* Representation Capacity: Encoding and Decoding

Encoding

Classifier Boat

Decoding

The successful of deep learning is the approximate capacity of the neural network that finds a
good latent representation z for the visible input data x. In deep learning, the process of
transforming visible input data, such as an image, text or video, into a latent representation,

alternatively known as embedding or hidden representation, is referred to as “encoding”. The
inverted process is referred to as “decoding”.
34

o\'N:,,‘._ »
NELFES

PEKING UNIVERSITY

Loss Functions

35

. Gy I 7> ¥
Loss Functions @ PEKING UNIVERSITY

* Motivation

ﬁoss functions are defined to quantify an error, known as the loss value, between the predicteh
and targeted (i.e., ground truth) outputs. The loss value is used as the goal for optimizing the
neural network parameters, such as the weights and biases. Specifically, optimizing a given neural
network minimizes the defined loss value by updating the network parameters. Gradient descent
is commonly used to update the parameter by computing the partial derivatives of the loss w.r.t
the network parameters. Details about gradient descent and neural network training are included

Q\ the next Section.. /

We don’t set the values of parameters manually, we define a loss function and use data to optimize the parameters

36

Loss Functions

* Logistic Regression Loss

a = f(z) = f(x;w; + x;w; + b)

CD » g
ANEFEE,
Tgoh

PEKING UNIVERSITY

The model only has one output

L=ylog(a) + (1 —y)log(1l—a)
Given M data samples

M
L= z (y™log(a™) + (1 — ym)log(1 — am))

m=1

37

Loss Functions

* Cross-Entropy Loss

Output a vector
a = softmax(z)

(ST »
AN EAE A

PEKING UNIVERSITY

The model has multiple outputs

K
L= yilog(ay)
k=1

Given M data samples

38

Loss Functions

. Lp norm

Measure the scale of a vector

1
lxll, = (Bk=1 1%k [P)?
K

Il = > el
k=1

Measure the difference between two vectors

K
Ly=ly—al}= zlyk—ak P
k=1

N ez K P

PEKING UNIVERSITY

39

ez ¥

PEKING UNIVERSITY

Loss Functions

 Mean Squared Error (MSE)

MSE is the £ , norm over samples and is used for regression problems in which the output of the
neural networks contains continuous values, such as the pixels of an image or a scalar value

Lysg = lly— a||%

Given M data samples

M
Lose == . lly" - aml
MSE = 1 y a3

m=1

40

P EE

PEKING UNIVERSITY

Loss Functions

 Mean Absolute Error (MAE)

MAE is the £ ; norm over samples, known as the least square error, MAE is also used for regression
problems and is expressed as follows.

Lyae = lly —all

Given M data samples

" M
L vak :M2|ym_am|

m=1

41

S »
N at 7. J’ >4

e 7 I
759%

PEKING UNIVERSITY

Loss Functions

* Many many more

42

o\'N:,,‘._ »
NELFES

PEKING UNIVERSITY

Optimization

43

ez ¥

PEKING UNIVERSITY

Optimization

* Motivation

~

/Given a network f(x; 8) and a loss function £, training the network is the process to minimise the
loss value L by updating the network parameters 8, such as the weights and biases. Gradient
descent is one method to update the network parameters. Even though there are some other
optimisation methods exist, such as limited memory BFGS (L-BFGS) and conjugate gradient (CG),

kdue to the drawbacks related to larger computation requirements, they are not often applied.)

Given f(x;8) and L find a good 6

44

ez ¥

PEKING UNIVERSITY

Optimization

e Gradient Descent

L Start point
Assuming one parameter only
dL

wWi=w—ag—
dw

Local minimums
Global minimum

W

45

I F X P

PEKING UNIVERSITY

Optimization

e Gradient Descent

Start point

Assuming two parameters

0L

Wj=wi—as s w=[wy,wy]

Local minimums

Global minimum

:Wl

46

G i D »
NELF TS

PEKING UNIVERSITY

Optimization

e Gradient Descent

0L
Allweneed: @:=0 - a—
“ a0

47

ez ¥

PEKING UNIVERSITY

Optimization

* Error Back-Propagation

. . aL .
The process of error back-propagation computes the gradlents% for every parameters in the

: : : . oL . . T
network. When computing the gradient, an intermediate result ==, Is introduced, which is the
0z partial derivative of the loss £ w.r.t the layer’s output z. Based on this intermediate result, the

: . oL . . .
process next computes the partial derivative of the loss L w.r.t every parameters% which is then
used to update the parameter values.

input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

48

o\'N:,,‘._ »
NELFES

PEKING UNIVERSITY

Optimization

* Error Back-Propagation

input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

Layer index [= 1 ... L from the first hidden layer to the output layer.
The input layer can be written as x = a®.

l: l:
¢ =) =

T ,_
We use this model and loss as an example: zt =w' a1 + b

1
£=E(y—aL)2

49

TN » g
NELE TS
Tgoh

PEKING UNIVERSITY

Optimization

* Error Back-Propagation: Vectors in Column Format

1. Given: 4. Then the error of the otherlayersl =1 ...L — 1:

l+1 l+1
. 1 1 . l:aL: 0L 0z _ [+1 0z
a = f(zl) ~ 1te-7 0 0zl ~ 9zlt1 9zl 0zl
ezl =w'la"! + bt . 1 — il gl + plt+1
° — l _ L2 P l+1 T T
L= > (y a) o ;Zl = Wi+l f—l(zl) — Wi+l o (al o (1 _ al))

2. Then we can have the following derivatives:
9zl 9zt a9zl

z
oL : .
. 3al (aL — y) Hadamard (element-wise) product 5. The the gradients are:
a
oL _ oL 9zt 0z! 1T
° —aZl = al_l and 6_zl =1 * owl - ozl aw! — Sla_u/l — 5lal !
ow! db!
l l
3. Then the error of the output layel . 0L _0L0z _ 5102 _ 5!
obt ozl ob! ab!
oL _ 9oL dal
e Ol = = = (at — y) o (al o (1 — al)) 6.Update parameters iterativel
0 ozL 0dal 9zl (a y)e(a (a)) P P y
wle i 0L bl b! 0L
= —a— = - A=
ow'! ob! 50

Chain rule!

Optimization

TN » g
NELE TS
Tgoh

* Error Back-Propagation: Vectors in Raw Format for Python
4. Then the error of the other layersl =1 ...L — 1:

1. Given:

[] l —_— l = —1[
a f(Z) 1+e™2
+ z! =a W' + b

+ L=-(y—al)?

2. Then we can have the following derivatives:

da’ ~1(,1 l l
. azlzf z)=a°(1-a")
0L
C o= (@Y
aZl _ -1 6zl _
w1 =@ and g =1

3. Then the error of the output layer

oL _ aL dal
dzL ~ dal 9zl

« SL=

PEKING UNIVERSITY

. sl=O0L_ 0L az*t L 4q 07!t
9zl azltl a8zl 0zl
o ZH1 — glwi+l 4 pltt
9z'*1 I+1 1 I+1 ! !
c I =Wl () =W e (al e (1 - al))
. o glo0L_ oL ozttt

9zl T 9zt gzl

5. Then the gradients are:

= (at — y) o (a* o (1 — a*)) 6.Update parameters iteratively

. 0L _oLost _ oozt _ al-17 5!
owl gzl awl! owl
. oL _oroz _ za_zl:(;z
bl 0z! ab! ab!
oL oL
W=W'—-a—— b'=b'—a——

ow'! ob'

— striyi+1T (@ o (1-a'))

51

ez ¥

PEKING UNIVERSITY

Optimization

* Error Back-Propagation: Gradient Vanish

. 61 _ oL . oL azl+1 _ 61+1Wl+1T o (al o (1 . al))

9zl azlt1 9zl

[N

Following the previous example, § has a term (al o (1 — al)) in which if the activation output a is

close to 0 or 1, the &' is small. In chain rule, §'= §'*1 ... so as the error propagate from the

output layer to the input layer, the § will become more and more small, which will leads to
difficult for updating the parameters of the layers on the front (near the input).)

* Solution 1: use ReLU to replace Sigmoid function. (commonly used in practice)
* Solution 2: pre-trained the parameters layer-by-layer ... Deep Belief Net

52

ez ¥

PEKING UNIVERSITY

Optimization

e Stochastic Gradient Descent (SGD)

L Start point Motivation
* Error back-propagation updates the parameters iteratively.
e Compute the loss £ using all data samples every time would be SLOW!

Method

* Randomly select a “batch” of samples from the training set to compute the L.

* These data are called a “mini-batch”, and the quantity of data is called the
“batch size”

* By updating the parameter multiple times, the mini-batches will cover the

. Local minimums entire training set. Epoch represents the mini-batch has looped over the

Global minimum entire training dataset.
W

53

ez ¥

PEKING UNIVERSITY

Optimization

* Adaptive Learning Rate

L Start point

Learning rate too large Learning rate too small
Local minimums Fail to converge into the saddle Very slow

Global minimum

W

54

AN s 4
ANEZES

PEKING UNIVERSITY

Optimization

* Adaptive Learning Rate

RMSProp, Adagrad, Adam, AMSGrad, AdaBound (PKU Undergraduate)

momentum

55

PLEEE

PEKING UNIVERSITY

Optimization

* Hyper-Parameter Selection

Training Data vs

y = f(x) Good model ® Training data
A y=a+bx

Training data is used to train the model
Testing data is used to test the model

A good model f(x; 0) (algorithm):
* Does not overfit to training data
* Generalizes well to testing data
\ Bad model : too complex ° Underfitting can be solved by a deeper model

y =a+ bx + cx? +dx3 + ex* +fx° +gx® +hx’

Al] ’ x

56

ez ¥

PEKING UNIVERSITY

Optimization

* Hyper-Parameter Selection

Training Data vs Validation Data vs

Hyper-parameters are the settings of the models, such as
* The number of layers
* The number of units
* The activation functions
* The loss function
* The batch size
* The number of epochs

N
Train a model F ([Test the performance Test the performance
on training set | >L on validation set on testing set

DO NOT select the hyper-parameters based on the performance on the testing set
IT IS CHEATING

Training data is used to train the model
Validation data is used to select the hyper-parameters

Testing data is used to test the model >

ez ¥

PEKING UNIVERSITY

Optimization

* Hyper-Parameter Selection & Cross Validation
Training Data vs Validation-Data vs

For small datasets, splitting the data into training, validating, and testing sets may be challenging. If
the size of the training data is too small, then the performance of the model will be impacted. On
the other hand, if the test data is too small, then the evaluation may not adequately reflect the
performance.

How to select hyper-parameters without a validation set?

58

guNlpé até‘*g

PEKING UNIVERSITY

Optimization

* Hyper-Parameter Selection & K-Fold Cross Validation
The dataset is separated into K folds of data evenly.

Test data Training data

Fole‘ ‘ ‘ @ Q @ ‘ ‘ ‘ ‘ ‘ ‘—) Performance 2
Fold3‘ ‘ ‘ ‘ ‘ ‘ Q Q Q ‘ ‘ ‘——) Performance 3

Fold4‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Q Q O—) Performance 4
\

All data Final Performance

‘ Train data O Test data -

P »
NELFES

PEKING UNIVERSITY

Regularization

60

ez ¥

PEKING UNIVERSITY

Regularization
* Motivation

A y=a+bx

* Using more training data can help to alleviate the
overfitting problem, but it is expensive.

* Regularization is for alleviating the overfitting problem.

-

What happen if we have more blue data points?

61

AN s 4
NELT XS

PEKING UNIVERSITY

Regularization

* Data Augmentation

=
M

Common image data augmentation methods: horizontal flipping, rotating, shifting, and zooming

e"ump% } g
NEZT XS

PEKING UNIVERSITY

Regularization

* Early Stopping

* Terminate the training before the model start to overfit the data

Start to overfit

Training loss

»epochs

63

P EE

PEKING UNIVERSITY

Regularization
 Weight Decay

A y=a+ bx * Simply make the parameters smaller !

N Liotar = L + A”W”

The original loss Regularization term

Lambda: controls the strength of the regularization

y =a+ bx + cx? +dx3 + ex* +fx° +gx® +hx’

A] >

What happenifc,d, e, f, g, and h are small values?

64

SIS >
75 e i)

PEKING UNIVERSITY

Regularization

* L, norm * L, norm
Liotar = L+ ALy Liotar = L + AL,
L= W] L, = W5

Note: The weight decay only for the weights not the biases

65

Regularization

e Lyvs L, norm

»
NELF TS

PEKING UNIVERSITY

Given only two weights: w; and w,

L, penalty become ..
2
Ly = W3 = wi* + wy?
Given a specific L, value, it is a circle:

1 = w{® + w,? is a circle with a radius of 1
4 = w,%> + w,? is a circle with a radius of 2

OL

L, penalty become ..
Ly == |wq| + [w,]
Given a specific L, value, it is a square:

1 = |wq| + |w,] is a square with a diagonal line that has a length of 1
2 = |wy| + |w,]| is a square with a diagonal line that has a length of 2

66

OL

Regularization

e Lyvs L, norm

L, more likely to has zero weights

Qriginal loss

Optimal parameters

-
N

Regularization term AL, Regularization term AL;

OL OL

ez ¥

PEKING UNIVERSITY

Regularization

e Lyvs L, norm

The network parameter values are often smaller than 1, so by using £,, a smaller
value can result in a much smaller penalty than £, (e.g., |w| > w? when w < 1).
In contrast, £, can have a larger plenty than £, for small values.

|0.5| > 0.52

68

ez ¥

PEKING UNIVERSITY

Regularization
e Lyvs L, norm

L, more likely to has zero parameters, so it has the sparse property which

enables the networks to perform “feature selection”.
(ReLU has such property as well)

input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

Discarding some input features by setting the corresponding parameters to zero or a very small value
69

ez ¥

PEKING UNIVERSITY

Regularization

* Dropout
input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

In practice, there will be hundreds and thousands units per layer

* Large neural networks include many parameters making it difficult to deal with the overfitting
by combining the predictions from so many parameters.

* Dropout randomly set the hidden outputs to zero, which resembles a random disconnection of
the neural units from one layer to the next o

ez X%

PEKING UNIVERSITY

Regularization

* Dropout

* According to error back-propagation, with a zero-valued output a, the corresponding partial
derivative of the loss w.r.t respect to the layer output will be zero. In other words, only the
remaining connected weights will be updated.

* The dropout method can train may different sub-networks while allowing all of them to share
the same network parameters.

* During testing, dropout is disabled, and no output elements are set to zero. In other words, all
sub-networks are used to predict the result represented as using the average from many
networks as the final result (i.e., ensemble learning)

In practice, only apply Dropout in fully connected layers
71

NELT LR
Regularization PEKING UNIVERSITY

* Batch Normalization « Batch normalization is the introduction of a layer that normalizes the
inputs to have a mean of 0 and variance of 1 and can improve the
performance of a neural network and its training stability.

* During training, the batch normalisation layer estimates the mean and
variance of the batch input using a moving average, which updates the
moving mean and variance for every iteration to be used for
normalizing the batch input.

* During testing, the moving mean and variance are fixed and applied to
normalise the input.

* Similar to the dropout process that adds a random factor to the hidden
values, the moving mean and variance of batch normalization introduce
randomness as they are updated in each iteration according to the
random mini-batch. Therefore, the network must learn to be robust
enough to deal with the variation.

* Do NOT use bias in the layer before batch norm

* DO NOT use activation operation before batch norm 7z

(T »
NELFES

PEKING UNIVERSITY

Implementation

74

01.
02.
03.
04.
05.
06.
07.
08.
0%
10.
Ll
12.
18,
14.
15 .
16.
17/
18.

Implementation

Static Model

import tensorflow as tf
from tensorlayer.layers import Input, Dropout, Dense
from tensorlayer.models import Model

def get model (inputs_shape) :
ni = Input (inputs_shape)
nn = Dropout (keep=0.8) (ni)
nn = Dense(n_units=800, act=tf.nn.relu, name="densel") (nn)
nn = Dropout (keep=0.8) (nn)
nn = Dense(n_units=800, act=tf.nn.relu) (nn)
nn = Dropout (keep=0.8) (nn)
nn = Dense(n_units=10, act=tf.nn.relu) (nn)
M = Model (inputs=ni, outputs=nn, name="mlp")

return M
MLP = get model ([None, 784]) 5 Fash‘\()“
MLP.eval () Lasag“

outputs = MLP (data)

https://tensorlayer.readthedocs.io

01.
02.
08 -
04.
05.
06.
07.
08.
09.
10.
11.
12
18
14.
15
16.
L7
18.
1.
20.
21
22
23
24.
23 c
26.
27

ez ¥

PEKING UNIVERSITY

Dynamic Model

class CustomModel (Model) :

def init (self):
super (CustomModel, self). init_ ()

self.dropoutl = Dropout (keep=0.8)

self.densel = Dense(n_units=800, act=tf.nn.relu, in channels=784)
self.dropout2 = Dropout (keep=0.8)# (self.densel)

self.dense2 = Dense(n_units=800, act=tf.nn.relu, in_channels=800)
self.dropout3 = Dropout (keep=0.8)# (self.dense?2)

self.dense3 = Dense(n_units=10, act=tf.nn.relu, in_channels=800)

def forward(self, x, foo=False):
= self.dropoutl (x)
= self.densel (z)
= self.dropout2 (z)
= self.dense2(z)
= self.dropout3(z)
out = self.dense3(z)
if foo:
out = tf.nn.relu(out)
return out

N N N N N

chainer pashio?

MLP = CustomModel ()

MLP.eval ()

outputs = MLP(data, foo=True) # controls the forward here
outputs = MLP(data, foo=False)

75

Implementation

01.
02.
03.
04.
05
06.
07.
08.
09.
10.
11.

Switching Train/Test Modes

method 1: switch before forward
Model.train() # enable dropout, batch norm moving avg
output = Model (train_data)

training code here
Model.eval() # disable dropout, batch norm moving avg
output = Model (test data)

testing code here

method 2: switch while forward
output = Model (train_data, is_train=True)
output = Model (test data, is train=False)

ez ¥

PEKING UNIVERSITY

76

ez ¥

PEKING UNIVERSITY

Implementation

Reuse Weights in Static Model Reuse Weights in Dynamic Model

01. def create_base_network (input_shape) :
02. '''"'Base network to be shared (eq. to feature extraction).
03 . Tra
04. input = Input (shape=input_shape)
05. x = Flatten() (input) 01. class MyModel (Model) :
06. x = Dense (128, act=tf.nn.relu) (x) 02. def init (self):
07. x = Dropout (0.9) (x) 03. super (MyModel, self). init_ ()
08. x = Dense (128, act=tf.nn.relu) (x) 04. self.dense_shared = Dense(n_units=800, act=tf.nn.relu, in_channels=784)
09. x = Dropout (0.9) (x) 05. self.densel = Dense(n_units=10, act=tf.nn.relu, in_channels=800)
10. x = Dense (128, act=tf.nn.relu) (x) 06. self.dense2 = Dense(n_units=10, act=tf.nn.relu, in_channels=800)
11. return Model (input, x) 07. self.cat = Concat ()
12. 08.
13. 0% def forward(self, x):
14. def get_siamese_network(input_shape): 10. x1 = self.dense_shared(x) # call dense_shared twice
15. """Create siamese network with shared base network as layer E xi = sei;.gensezs{hifed(x)
DO : x1l = self.densel (x
s . 13. x2 = self.dense2 (x2)
175 base_layer = create_base_network(input_shape).as_layer() # convert model as layer ORE & e EaE (g, 21)
5 = o ’
ok 15 return out
1598 ni_1 = Input (input_shape) 16.
20. ni_2 = Input (input_shape) 17. model = MyModel ()
21 nn_1 = base_layer(ni_1) # call base_layer twice
22 nn_2 = base_layer (ni_2)
23 o return Model (inputs=[ni_1, ni 2], outputs=[nn_1, nn_2])
24.
25. siamese net = get_siamese_network ([None, 784])

77

01.

Implementation

Print Model Architecture

import pprint

02.

03.
04.
05.
06.
07.
08.
09
10.
11.
12 .

def get model (inputs_shape) :
ni = Input (inputs_shape)
nn Dropout (keep=0.8) (ni)
nn = Dense(n_units=800, act=tf.nn.relu) (nn)
nn = Dropout (keep=0.8) (nn)

nn = Dense(n_units=800, act=tf.nn.relu) (nn)
nn = Dropout (keep=0.8) (nn)

nn = Dense(n_units=10, act=tf.nn.relu) (nn)
M = Model (inputs=ni, outputs=nn, name="mlp")
return M

L3

14.
15.

MLP = get model ([None, 784])
pprint.pprint (MLP.config)

ez ¥

PEKING UNIVERSITY

[{'args": {'dtype": tf.float32,
'layer_type": 'normal’,
‘name': '_inputlayer_1',
'shape': [None, 784]},
‘class': '_InputLayer’,
'prev_layer': None},
{'args": {'keep': 0.8, 'layer_type'": 'normal’, 'name': 'dropout_1'},
‘class': 'Dropout’,
'prev_layer": ['_inputlayer_1_node_0'1},
{"args": {'act’: ‘relu’,
'layer_type": 'normal’,
'n_units': 800,
‘name': 'dense_1'},
‘class': 'Dense’,
'prev_layer': ['dropout_1_node_0']},
{"args": {'keep': 0.8, 'layer_type'": 'normal’, 'name': 'dropout_2'},
‘class': 'Dropout’,
'prev_layer': ['dense_1_node_0'1},
{"args": {'act": ‘relu’,
'layer_type": 'normal’,
'n_units': 800,
‘name': 'dense_2'},
‘class': 'Dense’,
'prev_layer': ['dropout_2_node_0']},
{"args": {'keep': 0.8, 'layer_type'": 'normal’, 'name': 'dropout_3'},
‘class': 'Dropout’,
'prev_layer': ['dense_2_node_0'1},
{"args": {'act’: ‘relu’,
'layer_type": 'normal’,
'n_units": 10
‘name': 'dense_3'},
‘class': 'Dense’,
'prev_layer": ['dropout_3_node_0'1}]

78

Implementation

01.
02.
03
04.
05.
06.
07.
08.
09.
10.
Ll .

01.
02.
03.
04.
03 .
06.

Print Model Information

print (MLP) # simply call print function

Model (
(_inputlayer) : Input (shape=[None, 784], name='_inputlayer')
(dropout) : Dropout (keep=0.8, name='dropout')
(dense) : Dense(n_units=800, relu, in channels='784', name='dense')

(dense_1): Dense(n_units=800, relu, in_channels='800', name='dense 1')

(dropout_2) : Dropout (keep=0.8, name='dropout 2')

(dense_2): Dense(n_units=10, relu, in channels='800', name='dense_ 2')

#
#
#
#
(dropout 1) : Dropout (keep=0.8, name='dropout 1')
#
#
#
#

)

Get Specific Weights

indexing
all weights = MLP.all weights
some_weights = MLP.all weights[1:3]

naming
some_weights = MLP.get layer('densel').all weights

01.
02.

ez ¥

PEKING UNIVERSITY
Save Weights Only
01. MLP.save weights('./model weights.h5")
02. MLP.load_weights('./model_weights.hS')

Save Weights + Architecture

MLP.save ('./model.h5"', save_weights=True)
MLP = Model.load('./model.h5', load weights=True)

79

Implementation

Customized layers with weights

class Dense(Layer):
"""The :class: Dense’ class is a fully connected layer.

Parameters
n_units : int
The number of units of this layer.
act : activation function
The activation function of this layer.
name : None or str
A unique layer name. If None, a unique name will be automatically generated.

def __init_ (

self,
n_units, # the number of units/channels of this layer
act=None, # None: no activation, tf.nn.relu: RelLU ...

name=None, # the name of this layer (optional)

super(Dense, self).__init__ (name) # auto naming, dense_1, dense_2 ...
self.n_units = n_units
self.act = act

def build(self, inputs_shape): # initialize the model weights here
shape = [inputs_shape[1], self.n_units]
self.W = self._get_weights("weights", shape=tuple(shape), init=self.W_init)
self.b = self._get_weights("biases", shape=(self.n_units,), init=self.b_init)

def forward(self, inputs): # call function
z = tf.matmul(inputs, self.W) + self.b
if self.act: # is not None
z = self.act(z)
return z

class Dense(Layer):
"""The :class: Dense’ class is a fully connected layer.

ez ¥

PEKING UNIVERSITY

Parameters

n_units : int
The number of units of this layer.
act : activation function
The activation function of this layer.
W_init : initializer
The initializer for the weight matrix.
b_init : initializer or None
The initializer for the bias vector. If None, skip biases.
in_channels: int
The number of channels of the previous layer.
If None, it will be automatically detected when the layer is forwarded for the first time.
name : None or str
A unique layer name. If None, a unique name will be automatically generated.

def __init__(
self,
n_units,
act=None,
W_init=tl.initializers.truncated_normal(stddev=0.1),
b_init=tl.initializers.constant(value=0.0),
in_channels=None, # the number of units/channels of the previous layer
name=None,

we feed activation function to the base layer, ‘None' denotes identity function
string (e.g., relu, sigmoid) will be converted into function.
super(Dense, self).__init__(name, act=act)

self.n_units = n_units
self.W_init = W_init
self.b_init = b_init
self.in_channels = in_channels

in dynamic model, the number of input channel is given, we initialize the weights here
if self.in_channels is not None:

self.build(self.in_channels)

self._built = True

logging.info(
"Dense %s: %d %s" %
(self.name, self.n_units, self.act.__name__ if self.act is not None else 'No Activation')
)
def build(self, inputs_shape): # initialize the model weights here
if self.in_channels: # if the number of input channel is given, use it
shape = [self.in_channels, self.n_units]
else: # otherwise, get it from static model
self.in_channels = inputs_shape[1]
shape = [inputs_shape[1], self.n_units]
self.W = self._get_weights("weights", shape=tuple(shape), init=self.W_init)
if self.b_init: # if b_init is None, no bias is applied
self.b = self._get_weights("biases", shape=(self.n_units,), init=self.b_init)

de

-+

forward(self, inputs):

z = tf.matmul(inputs, self.W)

if self.b_init:
z = tf.add(z, self.b)

if self.act: 80
z = self.act(z)

return z

ez ¥

PEKING UNIVERSITY

Implementation

Customized layers with train/test modes

class Dropout(Layer):
The :class: Dropout’ class is a noise layer which randomly set some
activations to zero according to a keeping probability.
Parameters
keep : float
The keeping probability.
The lower the probability it is, the more activations are set to zero.
name : None or str
A unique layer name.

def __init_ (self, keep, name=None):
super(Dropout, self).__init__(name)
self.keep = keep

self.build()
self._built = True

logging.info("Dropout %s: keep: %f " % (self.name, self.keep))

def build(self, inputs_shape=None):
pass # no weights in dropout layer

def forward(self, inputs):
if self.is_train: # this attribute is changed by Model.train() and Model.eval()

outputs = tf.nn.dropout(inputs, rate=1 - (self.keep), name=self.name)
else:

outputs = inputs
return outputs 81

ez) ¥

PEKING UNIVERSITY

Implementation

* Training without Dataflow
One iteration GPU Idle

. > time
Model Training
(GPU)
Data Processing
(CPU)
GPU Utilization: 70%
Prepare a batch of training data
» time

Model Training
(GPU)

Data Processing
(CPU)
GPU Utilization: 50%

82

ez ¥

PEKING UNIVERSITY

Implementation

* Training with Dataflow

Model Training
(GPU) time

Data Processing
(CPU)
GPU Utilization: 100%

v

» time
Model Training
Data Processing
(CPU)
GPU Utilization: 100%
» time

Model Training
(GPU)

Data Processing
(CPU)
GPU Utilization: 75%

83

Implementation

* Distributed Training

AR —_————————

T T T T —_—m———-

o ————_——————————

L —_—m————-

S S S —— P ———

T T T e

Model Parallelism

o
=S
—~
)
=
w
m
>
=
-
(0]
<
o
(o8
L,

T T T T T

e

o
=S
—~
)
=
N
m
>
=
-
(0]
<
o
(o8
L,

T T e

»
N L 7 S

PEKING UNIVERSITY

®)
-3
~
0
-
IS
m
>
Ep
=
0]
<
o
o
b

T T T T T

o
=
~
D
=
[EEY
m
>
=2
=
)
<
o
Q.
o

T T T T

Data Parallelism

84

>4

D
7

CD » g
ANEFEE,
Tgoh

PEKING UNIVERSITY

Implementation

e Distributed Training: Data Parallelism - Parameter Server

Averages gradients Averages different parts of the gradients
Parameter Parameter Parameter
Server Server 1 Server 2

— T~

Worker 1 Worker 2 Worker 3 Worker 1 Worker 2 Worker 3

85

NELFES

PEKING UNIVERSITY

Implementation

* Distributed Training: Data Parallelism - Horovod - All ringreduce

Worker 1

——————————————————————————

’

’
[
[}

Step 1 |

Worker 3

e

f, Worker 1 !
Step 3 i

. Worker 2

: . Worker 3

(T »
NELFES

PEKING UNIVERSITY

Implementation

* Distributed Training: Data Parallelism - Horovod - All ringreduce

v

Worker 1 Model ——> Gradients —9— Averaged Gradients
v

Worker 2 Model —> Gradients —%—> Averaged Gradients

! i
Worker 3 Model ———> Gradients ‘AX Averaged Gradients

Ring-allreduce

87

ez)%

PEKING UNIVERSITY

Implementation

* TensorlLayer 2.0
5000 Stars ~ 1000 Forks ~ 180k Downloads

3
7 AQ:’ ﬁ
N :
ez Y :
PEKING UNIVERSITY 2
i
¢ .
Google UCLA B,
¢ TEE3
Stal‘lford . ;) —ieiniE TensorLayer
University rf ? /» \g Py

Tsinghua University

€

Alibaba Group

e s memse
N W

TensorlLayer:

rt

ACMmultimedia25

il Let's Make History! -
ACM Special Interest Group on Multimedia

presents to

Hao Dong, Akara Supratak, Luo Mai,
Fangde Liu, Axel Oechmichen, Simiao Yu, Yike Guo

Best Open Source Software Award 2017

"TensorLayer: A Versatile Library for Efficient Deep Learning
Development"

October, 2017

AV

=5g]

Tencentign & 3609 h.v

=. Microsoft Bloomberg m ReFuELa Good Al Lab

88
A Versatile Library for Efficient Deep Learning Development. H. Dong, A. Supratak et al. ACM MM 2017.

LINKOPING
UNIVERSITY

Ik

Xlaomi.com

P »
NELFES

PEKING UNIVERSITY

Summary

89

e"ump% } g
NEZT XS

PEKING UNIVERSITY

Deep Neural Network Foundation

* Single Neuron

 The neuron can be represented by the matrix multiplication.
e A bias value allows the output value to be shifted higher or lower to better fit the input data.

e Activation Functions

* Provide non-linearity to the network.

* Multi-layer Perceptron

* Higher representation capacity.

* Loss Functions
* The goal of the optimization.
* Optimization
* Gradient descent = Error back-propagation - SGD - Adaptive learning rate

e Regularization
* Weight decay, dropout, batch norm ...

* Implementation

* Define static/dynamic models, dataflow, distributed training ... "

NELE TR

PEKING UNIVERSITY

Deep Neural Network Foundation

Link:

Exercise 1:

* Implement the error back-propagation with the provided Numpy template.
Keywords: regression, classification, Sigmoid, MSE, logistic regression, fully connected layer

Exercise 2:

* Use Tensorlayer to classify MNIST handwritten digit dataset including
training, validating, and testing.

Keywords: classification, cross-entropy, fully connected layer, evaluation

* Exercise 3:
e Classify the MNIST dataset by modifying the code from exercise 1.
Keywords: classification, Softmax, ReLU, cross-entropy, fully connected layer

* Exercise 4: (Optional)

* Following exercise 2, implement a dataflow for data augmentation
Keywords: classification, Softmax, ReLU, cross-entropy, fully connected layer

91

P »
NELFES

PEKING UNIVERSITY

Questions?

92

