
Deep Neural Network Foundation
Hao Dong

2019, Peking University

1

• Single Neuron

• Activation Functions

• Multi-layer Perceptron

• Loss Functions

• Optimization

• Regularization

• Implementation
2Goal:	Understand	the	basic	knowledge	of	deep	neural	networks

Deep Neural Network Foundation

Single Neuron

3

Single Neuron

• Motivation

4

Single Neuron

• 3 inputs and 1 output

5

z = x1w1 + x2w2 + x3w3

The	output	is	a	linear	combination	of	the	inputs

𝑥!

𝑥"

𝑥#

z

output layerinput layer

𝑤!

𝑤"

𝑤#

• A	larger	absolute	value	of	the	weight means	the	output	more	
sensitive	to	the	specific	input

For example, z may be a score determining if we are to play
football. If z is large, then we play. To determinate this score,
x1 represents the weather, x2 is the expense of the football
field rental, and x3 is the distance to the field. These inputs
are considered the features w.r.t the output. If the whether is
the most critical factor, then we can set w1 to a large positive
value and set w2 and w3 to smaller positive values. If any w is
set to zero, then the corresponding input feature is ignored.

A	single	neuron

Single Neuron

• 3 inputs and 1 output

6

z = x1w1 + x2w2 + x3w3

The	output	is	a	linear	combination	of	the	inputs

• A	single	neuron	is	a	network	that	has	only	one	(output)	layer and	one	output

• As	the	output	connected	to	all	inputs,	this	layer	is	called	“fully	connected	layer”
or	“dense	layer”

𝑥!

𝑥"

𝑥#

z

output layerinput layer

𝑤!

𝑤"

𝑤#

Single Neuron

• 3 inputs and 1 output

7

𝑥!

𝑥"

𝑥#

z

output layerinput layer

𝑤!

𝑤"

𝑤#

z = 𝑤1 𝑤2 𝑤3

𝑥1
𝑥2
𝑥3

z = x1w1 + x2w2 + x3w3

𝑧 = 𝒘𝑇𝒙

𝒘 =
𝑤1
𝑤2
𝑤3

𝒙 =
𝑥1
𝑥2
𝑥3

column format row format

𝒘 =
𝑤1
𝑤2
𝑤3

𝒙 = 𝑥1 𝑥2 𝑥3

𝑧 = 𝒙𝒘

𝑧 = 𝑥1 𝑥2 𝑥3
𝑤1
𝑤2
𝑤3

This	neuron	can	be	represented	by	a	matrix	multiplication

Single Neuron

• Bias

8

A	bias value	allows	the	output	value	to	be	shifted	higher	or	lower	to	better	fit	the	input	data.	

𝑧 = x1w1 + x2w2 + x3w3 + 𝑏

z = 𝑤1 𝑤2 𝑤3

𝑥1
𝑥2
𝑥3

+ 𝑏

𝑧 = 𝒘𝑇𝒙 + 𝑏

𝒘 =
𝑤1
𝑤2
𝑤3

𝒙 =
𝑥1
𝑥2
𝑥3

column format row format

𝒘 =
𝑤1
𝑤2
𝑤3

𝒙 = 𝑥1 𝑥2 𝑥3

𝑧 = 𝒙𝒘 + 𝑏

𝑧 = 𝑥1 𝑥2 𝑥3
𝑤1
𝑤2
𝑤3

+ 𝑏

b

𝑥!

𝑥"

𝑥#

z

output layerinput layer

𝑤!

𝑤"

𝑤#

bias

Single Neuron

• Classification

𝑥!

𝑥"

z

output layerinput layer

𝑤!

𝑤"

𝑥!

𝑥"

A	bias	value	allows	the	output	value	to	be	shifted	higher	or	lower	to	better	fit	the	input	data.	

b

𝑎 = /
0, 𝑖𝑓 𝑧 ≤ 0
1, 𝑖𝑓 𝑧 > 0

𝑧 = x1w1 + x2w2 + 𝑏

−
𝑏
𝑤1

−
𝑏
𝑤2

The	decision	boundarymust	cross	the	origin if	no	bias	!

The	decision	boundary can	be	shifted	
left	or	right	via	the	bias

Data	samples	with	two features	(𝑥1, 𝑥2)

Binary classification:

The	decision	boundary	is	a	line for	𝑧 = 0

9

Single Neuron

• Classification

output layerinput layer

𝑥!

𝑥"

A	bias	value	allows	the	output	value	to	be	shifted	higher	or	lower	to	better	fit	the	input	data.	

𝑎 = /
0, 𝑖𝑓 𝑧 ≤ 0
1, 𝑖𝑓 𝑧 > 0

𝑧 = x1w1 + x2w2 + x3w3 + 𝑏

−
𝑏
𝑤1

−
𝑏
𝑤2

The	decision	boundarymust	cross	the	origin	if	no	bias	!

The	decision	boundary can	be	shifted	
left	or	right	via	the	bias

Data	samples	with	three features	(𝑥1, 𝑥2, 𝑥3)

Binary classification:

The	decision	boundary	is	a	surface for	𝑧 = 0

b

𝑥!

𝑥"

𝑥#

z

𝑤!

𝑤"

𝑤#

𝑥#
−
𝑏
𝑤3

10

Single Neuron

• Classification
• Two	input	features:	Decision	boundary	is	a	line

• Three	input	features:	Decision	boundary	is	a	surface

• Many	input	features:	Decision	boundary	is	a	hyperplane or	hypersurface

11𝑥!

𝑥"

𝑥#

𝑥!

𝑥"

?

Single Neuron

• 3 inputs and 2 outputs

12

𝑥!

𝑥"

𝑥#

z1

output layerinput layer

𝑤!!

𝑤!"

𝑤#"
z2

𝑤"!

𝑤#!

𝑤""

z1 = x1w11 + x2w21 + x3w31 + 𝑏1
z2 = x1w12 + x2w22 + x3w32 + 𝑏2

Expanding	from	a	single	neuron,	a	network	can	have	multiple	outputs	

By using multiple neurons, we can obtain multiple outputs. For
example, the outputs can represent the scores if we should
play football or basketball.

Multiple	neurons
They	are	all	linear!

(The	biases	are	not	drawn	to	simplify	the	explanation)

Single Neuron

• 3 inputs and 2 outputs

13

𝑥!

𝑥"

𝑥#

z1

output layerinput layer

𝑤!!

𝑤!"

𝑤#"
z2

𝑧1
𝑧2

=
𝑤11 𝑤21 𝑤31
𝑤12 𝑤22 𝑤32

𝑥1
𝑥2
𝑥3

𝑤"!

𝑤#!

𝑤""

𝒛 = 𝑾𝑇𝒙

𝑾 =
𝑤11 𝑤12
𝑤21 𝑤22
𝑤31 𝑤32

column format

𝒙 =
𝑥1
𝑥2
𝑥3

𝒛 = 𝑧1
𝑧2

row format

𝒛 = 𝑧1 𝑧2 𝒙 = 𝑥1 𝑥2 𝑥3

𝑾 =
𝑤11 𝑤12
𝑤21 𝑤22
𝑤31 𝑤32

𝒛 = 𝒙𝑾

𝑧1 𝑧2 = 𝑥1 𝑥2 𝑥3
𝑤11 𝑤12
𝑤21 𝑤22
𝑤31 𝑤32

z1 = x1w11 + x2w21 + x3w31
z2 = x1w12 + x2w22 + x3w32

Activation

14

Activation

• Motivation

15

Activation	functions	provide	the	non-linearity on	the	layers	outputs,	
and	their	design	remains	an	active	researched	area.	

Activation

• Sigmoid or logistic function

16

Continuing with our example, for a given neural network, the output can represent specific scores,
such as the probability of playing football. To represent the probability from 0% to 100%, it is of
common practice to apply a function to scale the output to a value between 0 to 1.

𝑥!

𝑥"

𝑥#

𝑎

𝑤!

𝑤"

𝑤#

𝑓 𝑧 = 𝜎(𝑧) =
1

1 + 𝑒$%

𝑎 = 𝑓 𝑧 = 𝑓(x1w1 + x2w2 + 𝑏)
activation	value

Activation

• Tanh

17

Similar to the sigmoid, the hyperbolic tangent (tanh) also scales the output layer to a limited range
of values. With an output range between -1 to 1, this function is often used for regression, such as
for an output image with pixel values between -1 to 1.

𝑥!

𝑥"

𝑥#

𝑎

𝑤!

𝑤"

𝑤#

𝑓 𝑧 =
𝑒% − 𝑒$%

𝑒% + 𝑒$%
=

2
1 + 𝑒$"%

𝑎 = 𝑓 𝑧 = 𝑓(x1w1 + x2w2 + 𝑏)

Activation

• Sigmoid vs Tanh

18

The sigmoid and hyperbolic tangent functions are used to provide non-linearity to the network.

Activation

• Rectifier, Rectified linear unit (ReLU)

19

A function that sets the negative values to zero for the purpose of feature selection and provide a
simple way to compute the derivative which will be used in the optimization.

𝑥!

𝑥"

𝑥#

𝑎

𝑤!

𝑤"

𝑤#

𝑓 𝑧 = max 0, 𝑧 = /
0, 𝑖𝑓 𝑥 ≤ 0
𝑧, 𝑖𝑓 𝑥 > 0

𝑎 = 𝑓 𝑧 = 𝑓(x1w1 + x2w2 + 𝑏)

𝑥

Activation

• Leaky ReLU and Parametric Leaky ReLU

20

However, merely setting negative values to zero will lead to information loss. A solution was
proposed with the leaky ReLU where 𝛼 is a small positive value to control the slope (e.g., 0.1 and
0.2) so that the information from the negative values can pass through to the output. In addition,
the parametric ReLU (PReLU) was also proposed to consider α as a network parameter.

𝑥!

𝑥"

𝑥#

𝑎

𝑤!

𝑤"

𝑤#

𝑓 𝑧 = /
𝛼𝑧, 𝑖𝑓 𝑥 ≤ 0
𝑧 , 𝑖𝑓 𝑥 > 0

𝑎 = 𝑓 𝑧 = 𝑓(x1w1 + x2w2 + 𝑏)

Leaky ReLU

Activation

• Softmax

21

An network with three outputs and three inputs, with these multiple outputs, multi-class
classification can be performed, i.e., classify the input into one of three or more classes. The
Softmax function is designed for the output layer of a multi-class classifier to not only limit all
outputs to 0 to 1, as with the sigmoid, but also ensure the sum of each output equals 1, i.e., the
sum of all probabilities must be 100%.

𝑥!

𝑥"

𝑥#

𝑎1

𝑎2

𝑎3

𝒂𝑖 = 𝑓 𝑧 𝑖 =
𝑒%!

∑&'!(𝑒%"

Give	a	output	vector	𝒛 = 𝑧1, 𝑧2, 𝑧3 then	𝐾 = 3 is	the	vector	length,
we	obtain	an	activation	vector 𝒂 = 𝑎1, 𝑎2, 𝑎3 as	follow

Softmax	first	applies	an	exponential	function	to	each	output	
and	then	normalizes	each	by	dividing	it	by	the	sum	of	all	outputs.	

0.75

0.05

0.20

Activation

22

Identity

Binary Step

Sigmoid, Logistic

TanH

ArcTan

ReLU

Leaky ReLU

Softplus

ELU

Softmax

Reference: https://en.wikipedia.org/wiki/Activation_function

Multi-layer Perceptron

23

Multi-layer Perceptron

• Motivation : XOR Classification Problem

24

𝑧 = x1w1 + x2w2 + 𝑏

𝑥!

𝑥"

z

𝑤!

𝑤"

b

𝑥!

𝑥"

AND

𝑥& 𝑥' 𝑎
0 0 0

0 1 0

1 0 0

1 1 1

𝑥!

𝑥"

OR

𝑥& 𝑥' 𝑎
0 0 0

0 1 1

1 0 1

1 1 1

(0,0) (1,0)

(1,0) (1,1)

(0,0) (1,0)

(1,0) (1,1)

Multi-layer Perceptron

• Motivation : XOR Classification Problem

25

𝑧 = x1w1 + x2w2 + 𝑏

𝑥!

𝑥"

z

𝑤!

𝑤"

b

𝑥!

𝑥"

NOR

𝑥& 𝑥' 𝑎
0 0 1

0 1 0

1 0 0

1 1 0

𝑥!

𝑥"

NAND

𝑥& 𝑥' 𝑎
0 0 1

0 1 1

1 0 1

1 1 0

(0,0) (1,0)

(1,0) (1,1)

(0,0) (1,0)

(1,0) (1,1)

Multi-layer Perceptron

• Motivation : XOR Classification Problem

26

𝑧 = x1w1 + x2w2 + 𝑏

𝑥!

𝑥"

z

𝑤!

𝑤"

b

𝑥!

𝑥"

XNOR

𝑥& 𝑥' 𝑎
0 0 1

0 1 0

1 0 0

1 1 1

(0,0) (1,0)

(1,0) (1,1)

Cannot	find	a	line	to	segment	the	data	points
Linear	non-separable problems

𝑥!
XOR

𝑥& 𝑥' 𝑎
0 0 0

0 1 1

1 0 1

1 1 0

(0,0) (1,0)

(1,0) (1,1)

Multi-layer Perceptron

• XOR Classification Problem

27

𝑥!

𝑥"

OR

NAND

AND XOR

hidden layer 1input layer output layer

𝑥!
XOR

(0,0) (1,0)

(1,0) (1,1)

𝑥"

𝑧!

(0,0) (1,0)

(1,0)

(1,1)

𝑧"
Learning	from	the	extracted	features

Multi-layer Perceptron

• More Complex Problems

29

𝑥!

𝑥"

𝑥#

𝑥!

𝑥"

𝒙 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥784]𝒙 = [𝑥1, 𝑥2, 𝑥3]𝒙 = [𝑥1, 𝑥2]

We	need	a	network	model	with	higher	capacity

Multi-layer Perceptron

• Representation Capacity

30

𝑥!

𝑥"

𝑥#

𝑎

output layerinput layer

activation value

Multi-layer Perceptron

• Representation Capacity

31

𝑥!

𝑥"

𝑥#

𝑎"!

hidden layer 1input layer

𝑎!!

𝑎#!

output layer

𝑎$

The	biases	are	not	drawn	to	simplify	the	figure.

A multi-layer perceptron (MLP) extends from a single,
fully connected layer, and consists of at least two fully
connected layers.

The layers between the inputs and outputs are called
“hidden” because they cannot be directly accessed
from outside the network.

By stacking a new layer on top of an existing layer, the
new layer is considered to use the output of the
previously existing layer as its input features.
Therefore, compared with a single fully connected
layer, MLP can fit more complex input data. In other
words, MLP can have more representational capability
than a single layer.

Multi-layer Perceptron

• Representation Capacity

32

𝑥!

𝑥"

𝑥#

𝑎"!

hidden layer 1input layer

𝑎!!

𝑎#!

output layer

𝑎""

𝑎!"

𝑎#"

𝑎$

hidden layer 2

Learn	from	the	inputs
Learn	from	the	feature	of the	inputs

Learn	from	the	feature	of	the	feature	of the	inputs

Multi-layer Perceptron

• Representation Capacity: Hierarchical Representation

33

𝑥!

𝑥"

𝑥#

𝑎"!

hidden layer 1input layer

𝑎!!

𝑎#!

𝑎""

𝑎!"

𝑎#"

hidden layer 2

𝑎"#

𝑎!#

𝑎##

𝑎!$

𝑎"$

output layerhidden layer 3

Layer	index	𝑙 = 1… 𝐿 from	the	first	hidden	layer	to	the	output	layer.
The	input	layer	can	be	written	as	𝒙 = 𝒂0.𝑎!" Output	index	𝑘 = 1…𝐾 where	𝐾 is	the	number	of	units	of	this	layer.

Activation	output	𝒂) = 𝑓(𝒛))

Multi-layer Perceptron

34

𝒙 𝒛

Cat
Horse
Boat
Dog

…

• Representation Capacity: Encoding and Decoding

The successful of deep learning is the approximate capacity of the neural network that finds a
good latent representation 𝒛 for the visible input data 𝒙. In deep learning, the process of
transforming visible input data, such as an image, text or video, into a latent representation,
alternatively known as embedding or hidden representation, is referred to as “encoding”. The
inverted process is referred to as “decoding”.

Loss Functions

35

Loss Functions

• Motivation

36

Loss functions are defined to quantify an error, known as the loss value, between the predicted
and targeted (i.e., ground truth) outputs. The loss value is used as the goal for optimizing the
neural network parameters, such as the weights and biases. Specifically, optimizing a given neural
network minimizes the defined loss value by updating the network parameters. Gradient descent
is commonly used to update the parameter by computing the partial derivatives of the loss w.r.t
the network parameters. Details about gradient descent and neural network training are included
in the next Section..

We	don’t	set	the	values	of	parameters	manually,	we	define	a	loss	function	and	use	data	to	optimize	the	parameters

Loss Functions

• Logistic Regression Loss

37

𝑥!

𝑥"

𝑥#

𝑎

𝑤!

𝑤"

𝑤#

𝑓 𝑧 = 𝜎(𝑧) =
1

1 + 𝑒$%

𝑎 = 𝑓 𝑧 = 𝑓(x1w1 + x2w2 + 𝑏) The model only has one output

ℒ = 𝑦 𝑙𝑜𝑔 𝑎 + 1 − 𝑦 log(1 − 𝑎)

Given 𝑴 data samples

ℒ = o
*'!

+

𝑦𝑚 𝑙𝑜𝑔 𝑎𝑚 + 1 − 𝑦𝑚 log(1 − 𝑎𝑚)

Loss Functions

• Cross-Entropy Loss

38

𝒂 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛

𝑥!

𝑥"

𝑥#

𝑎1

𝑎2

𝑎3 0.75

0.05

0.20

The model has multiple outputs

ℒ = o
&'!

(

𝒚&log(𝒂&)

Output a vector

Given 𝑴 data samples

ℒ = o
*'!

+

𝒚&*log(𝒂&*)

Loss Functions

• ℒ ! norm

39

Measure	the	scale	of	a	vector

Measure	the	difference	between	two	vectors

𝒙 , = ∑&'!(|𝒙&|𝑝
%
&

𝒙 ,
, = o

&'!

(

|𝒙&|𝑝

ℒ , = 𝒚 − 𝒂 ,
, = o

&'!

(

𝒚& − 𝒂& ,

Loss Functions

• Mean Squared Error (MSE)

40

MSE	is	the	ℒ " norm over samples and is used for regression problems in which the output of the
neural networks contains continuous values, such as the pixels of an image or a scalar value

ℒ +-. = 𝒚 − 𝒂 "
"

Given 𝑴 data samples

ℒ +-. =
1
𝑀
o
*'!

+

𝒚𝑚 − 𝒂𝑚 "
"

Loss Functions

• Mean Absolute Error (MAE)

41

MAE	is	the	ℒ ! norm over samples, known as the least square error, MAE is also used for regression
problems and is expressed as follows.

ℒ +/. = 𝒚 − 𝒂

Given 𝑴 data samples

ℒ +/. =
1
𝑀
o
*'!

+

𝒚𝑚 − 𝒂𝑚

Loss Functions

42

• Many many more ….

Optimization

43

Optimization

• Motivation

44

Given a network 𝑓(𝑥; 𝜃) and a loss function ℒ, training the network is the process to minimise the
loss value ℒ by updating the network parameters 𝜃, such as the weights and biases. Gradient
descent is one method to update the network parameters. Even though there are some other
optimisation methods exist, such as limited memory BFGS (L-BFGS) and conjugate gradient (CG),
due to the drawbacks related to larger computation requirements, they are not often applied.

Given 𝑓(𝑥; 𝜃) and ℒ find a good 𝜃

Optimization

• Gradient Descent

45

𝑤

ℒ

Global	minimum
Local	minimums

Start	point

𝑤 ≔𝑤 − 𝛼
𝑑ℒ
𝑑𝑤

Assuming one parameter only

Optimization

• Gradient Descent

46

𝒘1

ℒ

Global	minimum
Local	minimums

Start	point

𝒘𝒋 ≔𝒘𝒋 − 𝛼
𝜕ℒ
𝜕𝒘𝒋

Assuming two parameters

𝒘2
𝒘 = [𝒘1, 𝒘2]

Optimization

• Gradient Descent

47

𝜽 ≔ 𝜽 − 𝛼
𝜕ℒ
𝜕𝜽

All	we	need:

Optimization

• Error Back-Propagation

48

The process of error back-propagation computes the gradients !ℒ
!𝜽

for every parameters in the

network. When computing the gradient, an intermediate result 𝛿 = !ℒ
!𝒛

is introduced, which is the
∂z partial derivative of the loss ℒ w.r.t the layer’s output 𝑧. Based on this intermediate result, the
process next computes the partial derivative of the loss ℒ w.r.t every parameters !ℒ

!𝜽
which is then

used to update the parameter values.

𝑥!

𝑥"

𝑥#

𝑎"!

hidden layer 1input layer

𝑎!!

𝑎#!

𝑎""

𝑎!"

𝑎#"

hidden layer 2

𝑎"#

𝑎!#

𝑎##

𝑎!$

𝑎"$

output layerhidden layer 3

Optimization

• Error Back-Propagation

49

𝑥!

𝑥"

𝑥#

𝑎"!

hidden layer 1input layer

𝑎!!

𝑎#!

𝑎""

𝑎!"

𝑎#"

hidden layer 2

𝑎"#

𝑎!#

𝑎##

𝑎!$

𝑎"$

output layerhidden layer 3

Layer	index	𝑙 = 1… 𝐿 from	the	first	hidden	layer	to	the	output	layer.
The	input	layer	can	be	written	as	𝒙 = 𝒂0.

𝒂/ = 𝑓 𝒛𝑙 =
1

1 + 𝑒0𝒛%

𝒛/ = 𝑾/2𝒂/03 + 𝒃/

ℒ =
1
2
𝒚 − 𝒂4 2

We	use	this	model	and	loss	as	an	example:

Optimization

• Error Back-Propagation: Vectors in Column Format

50

• 𝒂/ = 𝑓 𝒛𝑙 = 3
3562𝒛

#

• 𝒛/ = 𝑾/2𝒂/03 + 𝒃/

• ℒ = 3
7
𝒚 − 𝒂4 2

• 8𝒂4

8𝒛4
= 𝑓03 𝒛𝑙 = 𝒂/ ∘ (1 − 𝒂/)

• 8ℒ
8𝒂4

= 𝒂4 − 𝒚

• 8𝒛4

8𝑾4 = 𝒂/03 and 8𝒛
4

8𝒃4
= 1

1.	Given:

2.	Then	we	can	have	the	following	derivatives:

3.	Then	the	error	of	the	output	laye1

• 𝛿𝐿 = 8ℒ
8𝒛5

= 8ℒ
8𝒂5

8𝒂5

8𝒛5
= (𝒂4 − 𝒚) ∘ (𝒂4 ∘ 1 − 𝒂4)

4.	Then	the	error	of	the	other	layers	𝒍 = 𝟏… 𝑳 − 𝟏:

• 𝛿𝑙 = 8ℒ
8𝒛4

= 8ℒ
8𝒛467

8𝒛467

8𝒛4
= 𝛿/53 8𝒛

467

8𝒛4

• 𝒛/53 = 𝑾/532𝒂/ + 𝒃/53

• 8𝒛467

8𝒛4
= 𝑾/532𝑓03 𝒛𝑙 = 𝑾/532 ∘ (𝒂/ ∘ 1 − 𝒂/)

• 𝛿𝑙 = 8ℒ
8𝒛4

= 8ℒ
8𝒛467

8𝒛467

8𝒛4
= 𝑾/532𝛿/53 ∘ (𝒂/ ∘ 1 − 𝒂/)

5.	The	the	gradients	are:

• 8ℒ
8𝑾4 =

8ℒ
8𝒛4

8𝒛4

8𝑾4 = 𝛿/ 8𝒛
4

8𝑾4 = 𝛿/𝒂/032

Chain	rule	!

• 8ℒ
8𝒃4

= 8ℒ
8𝒛4

8𝒛4

8𝒃4
= 𝛿/ 8𝒛

4

8𝒃4
= 𝛿/

Hadamard (element-wise) product

6.	Update	parameters	iteratively

𝑾𝒍 ≔ 𝑾𝒍 − 𝛼
𝜕ℒ
𝜕𝑾𝒍 𝒃𝒍 ≔ 𝒃𝒍 − 𝛼

𝜕ℒ
𝜕𝒃𝒍

Optimization

• Error Back-Propagation: Vectors in Raw Format for Python

51

• 𝒂/ = 𝑓 𝒛𝑙 = 3
3562𝒛

#

• 𝒛/ = 𝒂/03𝑾/ + 𝒃/

• ℒ = 3
7
𝒚 − 𝒂4 2

• 8𝒂4

8𝒛4
= 𝑓03 𝒛𝑙 = 𝒂/ ∘ (1 − 𝒂/)

• 8ℒ
8𝒂4

= 𝒂4 − 𝒚

• 8𝒛4

8𝑾4 = 𝒂/03 and 8𝒛
4

8𝒃4
= 1

1.	Given:

2.	Then	we	can	have	the	following	derivatives:

3.	Then	the	error	of	the	output	layer

• 𝛿𝐿 = 8ℒ
8𝒛5

= 8ℒ
8𝒂5

8𝒂5

8𝒛5
= (𝒂4 − 𝒚) ∘ (𝒂4 ∘ 1 − 𝒂4)

4.	Then	the	error	of	the	other	layers	𝒍 = 𝟏… 𝑳 − 𝟏:

• 𝛿𝑙 = 8ℒ
8𝒛4

= 8ℒ
8𝒛467

8𝒛467

8𝒛4
= 𝛿/53 8𝒛

467

8𝒛4

• 𝒛/53 = 𝒂/𝑾/53 + 𝒃/53

• 8𝒛467

8𝒛4
= 𝑾/53 ∘ 𝑓03 𝒛𝑙 = 𝑾/53 ∘ (𝒂/ ∘ 1 − 𝒂/)

• 𝛿𝑙 = 8ℒ
8𝒛4

= 8ℒ
8𝒛467

8𝒛467

8𝒛4
= 𝛿/53𝑾/532 ∘ (𝒂/ ∘ 1 − 𝒂/)

5.	Then	the	gradients	are:

• 8ℒ
8𝑾4 =

8ℒ
8𝒛4

8𝒛4

8𝑾4 = 𝛿/ 8𝒛
4

8𝑾4 = 𝒂/032𝛿/

• 8ℒ
8𝒃4

= 8ℒ
8𝒛4

8𝒛4

8𝒃4
= 𝛿/ 8𝒛

4

8𝒃4
= 𝛿/

6.	Update	parameters	iteratively

𝑾𝒍 ≔ 𝑾𝒍 − 𝛼
𝜕ℒ
𝜕𝑾𝒍 𝒃𝒍 ≔ 𝒃𝒍 − 𝛼

𝜕ℒ
𝜕𝒃𝒍

Optimization

• Error Back-Propagation: Gradient Vanish

52

• 𝛿𝑙 = 8ℒ
8𝒛4

= 8ℒ
8𝒛467

8𝒛467

8𝒛4
= 𝛿/53𝑾/532 ∘ (𝒂/ ∘ 1 − 𝒂/)

Following the previous example, 𝛿 has a term 𝒂(∘ 1 − 𝒂(in which if the activation output 𝒂 is
close to 0 or 1, the 𝛿𝑙 is small. In chain rule, 𝛿𝑙 = 𝛿()*… so as the error propagate from the
output layer to the input layer, the 𝛿 will become more and more small, which will leads to
difficult for updating the parameters of the layers on the front (near the input).

• Solution	1:	use	ReLU to	replace	Sigmoid	function.	(commonly	used	in	practice)
• Solution	2:	pre-trained	the	parameters	layer-by-layer	…	Deep	Belief	Net
• …

Optimization

• Stochastic Gradient Descent (SGD)

53

Motivation
• Error back-propagation updates the parameters iteratively.
• Compute the loss ℒ using all data samples every time would be SLOW!

Method
• Randomly select a “batch” of samples from the training set to compute the ℒ.
• These data are called a “mini-batch”, and the quantity of data is called the

“batch size”
• By updating the parameter multiple times, the mini-batches will cover the

entire training set. Epoch represents the mini-batch has looped over the
entire training dataset.

𝑤

ℒ

Global	minimum
Local	minimums

Start	point

Optimization

• Adaptive Learning Rate

54

𝑤

ℒ

Global	minimum
Local	minimums

Start	point

Learning	rate	too	large
Fail	to	converge	into	the	saddle

Learning	rate	too	small
Very	slow

Optimization

• Adaptive Learning Rate

55

RMSProp,	Adagrad,	Adam,	AMSGrad,	AdaBound (PKU	Undergraduate)

momentum	

Optimization

• Hyper-Parameter Selection

56

Training Data vs Testing Data
Training	data

Testing	data
Good	model

Bad model : too complex

A	good	model	𝑓(𝑥; 𝜃) (algorithm):
• Does	not	overfit to	training	data
• Generalizes well	to	testing	data	
• Underfitting can	be	solved	by	a	deeper	model

Training	data	is	used	to	train	the	model
Testing	data	is	used	to	test	the	model

𝑥

𝑦 = 𝑓(𝑥)

Optimization

• Hyper-Parameter Selection

57

Training Data vs Validation Data vs Testing Data

Training	data	is	used	to	train	the	model
Validation	data	is	used	to	select	the	hyper-parameters
Testing	data	is	used	to	test	the	model

Hyper-parameters	are	the	settings	of	the	models,	such	as	
• The	number	of	layers
• The	number	of	units
• The	activation	functions
• The	loss	function
• The	batch	size
• The	number	of	epochs
• …

Train	a	model
on	training	set

Test	the	performance	
on	validation	set

Test	the	performance	
on	testing	set

DO NOT select the hyper-parameters based on the performance on the testing set
IT IS CHEATING

Optimization

• Hyper-Parameter Selection & Cross Validation

58

Training Data vs Validation Data vs Testing Data

For small datasets, splitting the data into training, validating, and testing sets may be challenging. If
the size of the training data is too small, then the performance of the model will be impacted. On
the other hand, if the test data is too small, then the evaluation may not adequately reflect the
performance.

How	to	select	hyper-parameters	without	a	validation	set?

Optimization

• Hyper-Parameter Selection & K-Fold Cross Validation

59Test	dataTrain	data

Fold	1

Fold	2

Fold	3

Fold	4

All	data

Test	data Training	data

Performance	1

The	dataset	is	separated	into	K	folds	of	data	evenly.

Performance	2

Performance	3

Performance	4

Final	Performance

Regularization

60

Regularization

• Motivation

61

• Using	more	training	data	can	help	to	alleviate	the	
overfitting	problem,	but	it	is	expensive.

• Regularization	is	for	alleviating	the	overfitting	problem.

What happen if we have more blue data points?

Regularization

• Data Augmentation

62

Common	image	data	augmentation	methods:	horizontal	flipping,	rotating,	shifting,	and	zooming

Regularization

• Early Stopping

63

• Terminate the training before the model start to overfit the data

𝑒𝑝𝑜𝑐ℎ𝑠

ℒ

Training	loss

Testing	loss

Start	to	overfit

Regularization

• Weight Decay

64

• Simply	make	the	parameters	smaller	!

What happen if 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, and ℎ are small values?

ℒ+,+-(= ℒ + 𝜆 𝑾

Regularization	term
Lambda:	controls	the	strength	of	the	regularization

The	original	loss

Regularization

• ℒ2 norm

65

ℒ2 = 𝑾 .
.

ℒ+,+-(= ℒ + 𝜆ℒ2

Note: The weight decay only for the weights not the biases

• ℒ1 norm

ℒ1 = 𝑾

ℒ+,+-(= ℒ + 𝜆ℒ1

Regularization

• ℒ1 vs ℒ2 norm

66

ℒ2 penalty become ..

𝑤.

𝑤*

ℒ1 == 𝑤1 + 𝑤1ℒ2 = 𝑾 .
. = 𝑤1

2 + 𝑤2
2

Given a specific ℒ2 value, it is a circle:
1 = 𝑤1

2 + 𝑤2
2 is a circle with a radius of 1

4 = 𝑤1
2 + 𝑤2

2 is a circle with a radius of 2

ℒ1 penalty become ..

Given a specific ℒ1 value, it is a square:
1 = 𝑤1 + 𝑤2 is a square with a diagonal line that has a length of 1
2 = 𝑤1 + 𝑤2 is a square with a diagonal line that has a length of 2

𝑤.

𝑤*

Given only two weights: 𝒘𝟏 and 𝒘𝟐

⊙ ℒ ⊙ ℒ

Regularization

• ℒ1 vs ℒ2 norm

67

𝑤.

𝑤*

ℒ1more	likely	to	has	zero	weights

𝑤.

𝑤*

Optimal	parameters

Original	loss	ℒ

Regularization	term	𝜆ℒ2 Regularization	term	𝜆ℒ1

Original	loss	ℒ

⊙ ℒ ⊙ ℒ

Regularization

• ℒ1 vs ℒ2 norm

68

The network parameter values are often smaller than 1, so by using ℒ2, a smaller
value can result in a much smaller penalty than ℒ1 (e.g., 𝑤 > 𝑤2 when 𝑤 < 1).
In contrast, ℒ1 can have a larger plenty than ℒ2 for small values.

0.5 > 0.52

Regularization

• ℒ1 vs ℒ2 norm

69

ℒ1 more likely to has zero parameters, so it has the sparse property which
enables the networks to perform “feature selection”.

𝑥!

𝑥"

𝑥#

𝑎"!

hidden layer 1input layer

𝑎!!

𝑎#!

𝑎""

𝑎!"

𝑎#"

hidden layer 2

𝑎"#

𝑎!#

𝑎##

𝑎!$

𝑎"$

output layerhidden layer 3

Discarding	some	input	features	by	setting	the	corresponding	parameters	to	zero	or	a	very	small	value	

(ReLU has	such	property	as	well)

Regularization

• Dropout

70

𝑥!

𝑥"

𝑥#

𝑎"!

hidden layer 1input layer

𝑎!!

𝑎#!

𝑎""

𝑎!"

𝑎#"

hidden layer 2

𝑎"#

𝑎!#

𝑎##

𝑎!$

𝑎"$

output layerhidden layer 3

• Large	neural	networks	include	many	parameters	making	it	difficult	to	deal	with	the	overfitting	
by	combining	the	predictions	from	so	many	parameters.	

• Dropout	randomly	set	the	hidden	outputs	to	zero,	which	resembles	a	random	disconnection	of	
the	neural	units	from	one	layer	to	the	next	

In	practice,	there	will	be	hundreds	and	thousands	units	per	layer

Regularization

• Dropout

71

• According to error back-propagation, with a zero-valued output 𝑎, the corresponding partial
derivative of the loss w.r.t respect to the layer output will be zero. In other words, only the
remaining connected weights will be updated.

• The dropout method can train may different sub-networks while allowing all of them to share
the same network parameters.

• During testing, dropout is disabled, and no output elements are set to zero. In other words, all
sub-networks are used to predict the result represented as using the average from many
networks as the final result (i.e., ensemble learning)

In	practice,	only	apply	Dropout	in	fully	connected	layers

Regularization

• Batch Normalization

72

𝑥!

𝑥"

𝑥#

𝑧"!

𝑧!!

𝑧#!

𝑎"!

𝑎!!

𝑎#!

• Do	NOT	use	bias	in	the	layer	before	batch	norm
• DO	NOT	use	activation	operation	before	batch	norm

• Batch normalization is the introduction of a layer that normalizes the
inputs to have a mean of 0 and variance of 1 and can improve the
performance of a neural network and its training stability.

• During training, the batch normalisation layer estimates the mean and
variance of the batch input using a moving average, which updates the
moving mean and variance for every iteration to be used for
normalizing the batch input.

• During testing, the moving mean and variance are fixed and applied to
normalise the input.

• Similar to the dropout process that adds a random factor to the hidden
values, the moving mean and variance of batch normalization introduce
randomness as they are updated in each iteration according to the
random mini-batch. Therefore, the network must learn to be robust
enough to deal with the variation.

Implementation

74

75

Static	Model Dynamic	Model

https://tensorlayer.readthedocs.io

Implementation

Chainer
FashionLasagn

e	Fashio
n

76

Switching	Train/Test	Modes

Implementation

77

Reuse	Weights	in	Static	Model Reuse	Weights	in	Dynamic	Model

Implementation

78

Print	Model	Architecture
[{'args': {'dtype': tf.float32,

'layer_type': 'normal',
'name': '_inputlayer_1',
'shape': [None, 784]},

'class': '_InputLayer',
'prev_layer': None},
{'args': {'keep': 0.8, 'layer_type': 'normal', 'name': 'dropout_1'},
'class': 'Dropout',
'prev_layer': ['_inputlayer_1_node_0']},
{'args': {'act’: ‘relu',

'layer_type': 'normal',
'n_units': 800,
'name': 'dense_1'},

'class': 'Dense',
'prev_layer': ['dropout_1_node_0']},
{'args': {'keep': 0.8, 'layer_type': 'normal', 'name': 'dropout_2'},
'class': 'Dropout',
'prev_layer': ['dense_1_node_0']},
{'args': {'act': ‘relu',

'layer_type': 'normal',
'n_units': 800,
'name': 'dense_2'},

'class': 'Dense',
'prev_layer': ['dropout_2_node_0']},
{'args': {'keep': 0.8, 'layer_type': 'normal', 'name': 'dropout_3'},
'class': 'Dropout',
'prev_layer': ['dense_2_node_0']},
{'args': {'act’: ‘relu',

'layer_type': 'normal',
'n_units': 10,
'name': 'dense_3'},

'class': 'Dense',
'prev_layer': ['dropout_3_node_0']}]

Implementation

79

Print	Model	Information

Get	Specific	Weights

Save	Weights	Only

Save	Weights	+ Architecture

Implementation

80

Customized	layers	with	weights

Implementation

81

Customized	layers	with	train/test	modes

Implementation

82

Implementation

𝑡𝑖𝑚𝑒
Model	Training

(GPU)
Data	Processing

(CPU)
GPU Utilization: 70%

Model	Training
(GPU)

Data	Processing
(CPU)

GPU Utilization: 50%

• Training without Dataflow

𝑡𝑖𝑚𝑒

Prepare	a	batch	of	training	data

One	iteration GPU	Idle

83

Implementation

𝑡𝑖𝑚𝑒
Model	Training

(GPU)
Data	Processing

(CPU)
GPU Utilization: 100%

Model	Training
(GPU)

Data	Processing
(CPU)

GPU Utilization: 100%

• Training with Dataflow

𝑡𝑖𝑚𝑒

Model	Training
(GPU)

Data	Processing
(CPU)

GPU Utilization: 75%

𝑡𝑖𝑚𝑒

84

Implementation

• Distributed Training

Model part 3Worker 3

Model part 2Worker 2

Model part 1Worker 1

Model Parallelism

Entire ModelWorker 3

Entire ModelWorker 2 Entire ModelWorker 1

Entire ModelWorker 4

Data Parallelism

85

Implementation

• Distributed Training: Data Parallelism - Parameter Server

Worker 1

Parameter
Server

Worker 2 Worker 3

Averages gradients

Worker 1

Parameter
Server 1

Worker 2 Worker 3

Averages different parts of the gradients

Parameter
Server 2

86

Implementation

• Distributed Training: Data Parallelism - Horovod - All ringreduce

Worker 1

Worker 2 Worker 3

Worker 1

Worker 2 Worker 3

Worker 1

Worker 2 Worker 3

Step 1 Step 2

Step 3

87

Implementation

• Distributed Training: Data Parallelism - Horovod - All ringreduce

Model Gradients Averaged GradientsWorker 1

Model Gradients Averaged GradientsWorker 2

Ring-allreduce

Model Gradients Averaged GradientsWorker 3

88

Implementation

• TensorLayer 2.0

TensorLayer: A Versatile Library for Efficient Deep Learning Development. H. Dong, A. Supratak et al. ACM MM 2017.

5000 Stars ~ 1000 Forks ~ 180k Downloads

Summary

89

• Single Neuron
• The	neuron	can	be	represented	by	the	matrix	multiplication.
• A	bias	value	allows	the	output	value	to	be	shifted	higher	or	lower	to	better	fit	the	input	data.	

• Activation Functions
• Provide	non-linearity	to	the	network.

• Multi-layer Perceptron
• Higher	representation	capacity.

• Loss Functions
• The	goal	of	the	optimization.

• Optimization
• Gradient	descent	à Error	back-propagation	à SGD	à Adaptive	learning	rate

• Regularization
• Weight	decay,	dropout,	batch	norm	…

• Implementation
• Define	static/dynamic	models,	dataflow,	distributed	training	…

90

Deep Neural Network Foundation

91

• Exercise 1:
• Implement the error back-propagation with the provided Numpy template.
Keywords: regression, classification, Sigmoid, MSE, logistic regression, fully connected layer

• Exercise 2:
• Use TensorLayer to classify MNIST handwritten digit dataset including

training, validating, and testing.
Keywords: classification, cross-entropy, fully connected layer, evaluation

• Exercise 3:
• Classify the MNIST dataset by modifying the code from exercise 1.
Keywords: classification, Softmax, ReLU, cross-entropy, fully connected layer

• Exercise 4: (Optional)
• Following exercise 2, implement a dataflow for data augmentation
Keywords: classification, Softmax, ReLU, cross-entropy, fully connected layer

Link: https://github.com/zsdonghao/deep-learning-note

Deep Neural Network Foundation

Questions?

92

